Polyurethane acrylate prepolymers with different contents of HIPIH and HIH were synthesized via reacting excessive isophorone diisocyanate (IPDI) with poly(propylene glycol) (PPG) and then end-capping with 2-hydroxypropyl methacrylate (HPMA) in… Click to show full abstract
Polyurethane acrylate prepolymers with different contents of HIPIH and HIH were synthesized via reacting excessive isophorone diisocyanate (IPDI) with poly(propylene glycol) (PPG) and then end-capping with 2-hydroxypropyl methacrylate (HPMA) in isobornyl methacrylate (IBOMA). After the addition of the photoinitiator PI 1173, the resulting prepolymer resins were irradiated by UV light to form cured materials. The structures of the prepolymers were confirmed by 1H NMR, FT-IR, and GPC. SEM analyses proved that no obvious phase separation was observed within the cured sample. As the content of HIH increased, the viscosity of the prepolymers increased slightly. In addition, the gel content, solvent resistance, Shore hardness, Young’s modulus, and the tensile strength of the cured films increased, whereas the elongation at break decreased gradually. The volume shrinkage of the cured samples ranged between 4.5% and 4.8%. DMA analyses showed that the Tgs of the cured samples increased as more HIH structures existed. TGA analyses revealed that the cured samples had high thermal stability. This solvent-free fabrication process was simple, convenient, and controllable. By simply regulating the contents of HIPIH and HIH in the prepolymers, the performances of the cured materials could be adjusted to a wide range.
               
Click one of the above tabs to view related content.