LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Waste-Coffee-Derived Activated Carbon as Efficient Adsorbent for Water Treatment

Photo from wikipedia

Activated carbon prepared from waste coffee was utilized as a potential low-cost adsorbent to remove Rhodamine B from aqueous solution. A series of physical characterizations verify that the obtained activated… Click to show full abstract

Activated carbon prepared from waste coffee was utilized as a potential low-cost adsorbent to remove Rhodamine B from aqueous solution. A series of physical characterizations verify that the obtained activated carbon possesses a layered and ordered hexagonal structure with a wrinkled and rough surface. In addition, high specific surface area, appropriate pore distribution, and desired surface functional groups are revealed, which promote the adsorption properties. Various adsorption experiments were conducted to investigate the effect on the absorption capacity (e.g., of initial dye concentration, temperature and solution pH) of the material. The results showed that the waste-coffee-derived activated carbon with a large surface area of approximately 952.7 m2 g−1 showed a maximum uptake capacity of 83.4 mg g−1 at the pH of 7 with the initial dye concentration of 100 mg L−1 under 50°C. The higher adsorption capacity can be attributed to the strong electrostatic attraction between the negatively charged functional groups in activated carbon and the positively charged functional groups in RB. The kinetic data and the corresponding kinetic parameters were simulated to evaluate the mechanism of the adsorption process, which can fit well with the highest R2. The adsorption results confirmed the promising potential of the as-prepared waste-coffee-derived activated carbon as a dye adsorbent.

Keywords: coffee derived; carbon; derived activated; activated carbon; waste coffee

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.