LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tuning Cu-Content La1−xSrxNi1−yCuyO3−δ with Strontium Doping as Cobalt-Free Cathode Materials for High-Performance Anode-Supported IT-SOFCs

Photo by lanirudhreddy from unsplash

Cu-content La1−xSrxNi1−yCuyO3−δ perovskites with A-site strontium doping have been tuned as cobalt-free cathode materials for high-performance anode-supported SOFCs, working at an intermediate-temperature range. All obtained oxides belong to the R-3c… Click to show full abstract

Cu-content La1−xSrxNi1−yCuyO3−δ perovskites with A-site strontium doping have been tuned as cobalt-free cathode materials for high-performance anode-supported SOFCs, working at an intermediate-temperature range. All obtained oxides belong to the R-3c trigonal system, and phase transitions from the R-3c space group to a Pm-3m simple perovskite have been observed by HT-XRD studies. The substitution of lanthanum with strontium lowers the phase transition temperature, while increasing the thermal expansion coefficient (TEC) and oxygen non-stoichiometry δ of the studied materials. The thermal expansion is anisotropic, and TEC values are similar to commonly used solid electrolytes (e.g., 14.1 × 10−6 K−1 for La0.95Sr0.05Ni0.5Cu0.5O3−δ). The oxygen content of investigated compounds has been determined as a function of temperature. All studied materials are chemically compatible with GDC-10 but react with LSGM and 8YSZ electrolytes. The anode-supported SOFC with a La0.95Sr0.05Ni0.5Cu0.5O3−δ cathode presents an excellent power density of 445 mW·cm−2 at 650 °C in humidified H2. The results indicate that La1−xSrxNi1−yCuyO3−δ perovskites with strontium doping at the A-site can be qualified as promising cathode candidates for anode-supported SOFCs, yielding promising electrochemical performance in the intermediate-temperature range.

Keywords: la1 xsrxni1; supported sofcs; anode supported; xsrxni1 ycuyo3; strontium doping; cathode

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.