The diagenesis of welded tuffs is a process in which volcanic debris undergoes degassing, compaction, and quenching, and vitreous rheologic, which indicates that the welding occurred in a high-temperature, high-pressure… Click to show full abstract
The diagenesis of welded tuffs is a process in which volcanic debris undergoes degassing, compaction, and quenching, and vitreous rheologic, which indicates that the welding occurred in a high-temperature, high-pressure diagenetic environment and that different temperatures and pressures result in different degrees of welding in the welded tuffs, which can also result in differences in the mechanical properties of the rock. In this study, based on petrographic identification, mineral composition analysis, and pore structure characterization, uniaxial compression combined with linear accelerator CT and Brazilian splitting tests was carried out to investigate the influence of the welding degree on the strength and failure modes. The test results showed that although they had almost similar mineral composition and porosity, the uniaxial compression strength and tensile strength of the strongly welded tuffs were greater than that of the weakly welded tuffs. Their failure modes were also different. Fractures in the weakly welded tuffs developed gradually, while the strongly welded tuffs showed a higher brittleness with sudden failure. The results of this study shed light on the influence of the diagenetic environment on the mechanical properties of rock from a geological perspective and can provide a mechanical basis for rockfall risk evaluation in scenic areas of welded tuff.
               
Click one of the above tabs to view related content.