LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Covalently-Bonded Coating of L-Arginine Modified Magnetic Nanoparticles with Dextran Using Co-Precipitation Method

In this study, L-arginine (Arg) modified magnetite (Fe3O4) nanoparticles (RMNPs) were firstly synthesized through a one-step co-precipitation method, and then these aminated nanoparticles (NPs) were, again, coated by pre-oxidized dextran… Click to show full abstract

In this study, L-arginine (Arg) modified magnetite (Fe3O4) nanoparticles (RMNPs) were firstly synthesized through a one-step co-precipitation method, and then these aminated nanoparticles (NPs) were, again, coated by pre-oxidized dextran (Dext), in which aldehyde groups (DextCHO) have been introduced on the polymer chain successfully via a strong chemical linkage. Arg, an amino acid, acts as a mediator to link the Dext to a magnetic core. The as-synthesized Arg-modified and Dext-coated arginine modified Fe3O4 NPs were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and vibrating sample magnetometer (VSM). Both synthesized samples, XRD pattern and FT-IR spectra proved that the core is magnetite. FT-IR confirmed that the chemical bonds of Arg and Dext both exist in the samples. SEM images showed that the NPs are spherical and have an acceptable distribution size, and the VSM analysis indicated the superparamagnetic behavior of samples. The saturation magnetization was decreased after Dext coating, which confirms successive coating RMNPs with Text. In addition, the TGA analysis demonstrated that the prepared magnetic nanocomposites underwent various weight loss levels, which admitted the modification of magnetic cores with Arg and further coating with Dext.

Keywords: precipitation method; arginine modified; covalently bonded

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.