LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Theoretical and Practical Evaluation of the Feasibility of Zinc Evaporation from the Bottom Zinc Dross as a Valuable Secondary Material

Photo from wikipedia

This study presents a theoretical and practical evaluation of zinc evaporation from bottom zinc dross (hard zinc) as a secondary zinc source (zinc content approximately 94–97%), which originates in the… Click to show full abstract

This study presents a theoretical and practical evaluation of zinc evaporation from bottom zinc dross (hard zinc) as a secondary zinc source (zinc content approximately 94–97%), which originates in the batch hot-dip galvanizing process. The thermodynamics of the zinc evaporation process were studied under the normal pressure (100 kPa) in the inert atmosphere, using argon with flow rate 90 mL/min. Samples were subjected to the evaporation process for 5, 10 and 20 min under the temperature of 700 °C and 800 °C, respectively. For the theoretical thermodynamic study, HSC Chemistry 6.1 software was used and final products, as well as residuals after the evaporation process, were analyzed by SEM (Scanning Electron Microscopy) and EDX (Energy Dispersive X-ray). Calculated and experimental argon consumption in the process of zinc evaporation has been compared. A high purity zinc with efficiency over 99% was reached. Due to a dynamic regime, argon consumption at the temperature of 700 °C and 800 °C were 7 times and 3 times, respectively, less than calculated.

Keywords: zinc; evaporation; zinc evaporation; practical evaluation; theoretical practical; process

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.