LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reaction Behavior and Formation Mechanism of ZrB2 and ZrC from the Ni-Zr-B4C System during Self-Propagating High-Temperature Synthesis

Photo by fabiooulucas from unsplash

Self-propagating high-temperature synthesis (SHS) is a good way to prepare ZrB2-ZrC/metal cermet composites. In this work, ZrB2-ZrC/Ni cermet composites with various Ni contents were successfully fabricated by SHS using the… Click to show full abstract

Self-propagating high-temperature synthesis (SHS) is a good way to prepare ZrB2-ZrC/metal cermet composites. In this work, ZrB2-ZrC/Ni cermet composites with various Ni contents were successfully fabricated by SHS using the Ni-Zr-B4C system. The effects of Ni content and particle size of the B4C powder on the SHS reaction were investigated. The results indicated that with an increase in Ni content, the adiabatic temperature, maximum combustion temperature, ignition delay time, and ceramic particle size in the product all showed a gradually decreasing trend. The SHS products and the ignition of the SHS reactions were significantly dependent on the B4C particle size. The formation mechanism of ZrB2 and ZrC during SHS from the Ni-Zr-B4C system was proposed based on the combustion wave quenching experiment.

Keywords: temperature; b4c system; zrb2 zrc

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.