LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improved Electrochemical Performance of Sm0.2Ce0.8O1.9 (SDC) Nanoparticles Decorated SrCo0.8Fe0.1Ga0.1O3−δ (SCFG) Fiber, Fabricated by Electrospinning, for IT-SOFCs Cathode Application

This paper examines the electrochemical and microstructural features of SrCo0.8Fe0.1Ga0.1O3−δ (SCFG) with a fibrous structure infiltrated by an SDC electrolyte for use as a cathode in solid oxide fuel cells… Click to show full abstract

This paper examines the electrochemical and microstructural features of SrCo0.8Fe0.1Ga0.1O3−δ (SCFG) with a fibrous structure infiltrated by an SDC electrolyte for use as a cathode in solid oxide fuel cells (SOFCs). An electrospinning process is used to produce SCFG fibers. In a symmetrical cell, Sm0.2Ce0.8O1.9 (SDC) nanoparticles are infiltrated into the porous fibrous SCFG cathode layer after it was applied to the SDC dense electrolyte. Electrochemical impedance spectroscopy (EIS) analysis reveals that the polarization resistance of the SCFG cathode with fiber morphology is significantly lower than that of the same combination with powder morphology. In addition, it is shown that infiltration of SDC oxygen ion conductor nanoparticles enhanced electrochemical performance. The lowest value of polarization resistance, 0.03 Ω cm2 at 800 °C, is attained by the SCFG with a fibrous structure containing 14 wt% SDC nanoparticles.

Keywords: sdc nanoparticles; 8fe0 1ga0; srco0 8fe0; scfg; cathode

Journal Title: Materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.