LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Functionally Graded Material (FGM) Interlayer in Metal Additive Manufacturing of Inconel-Stainless Bimetallic Structure by Laser Melting Deposition (LMD) and Wire Arc Additive Manufacturing (WAAM)

Photo from wikipedia

Bimetallic structures manufactured by direct deposition have a defect due to the sudden change in the microstructure and properties of dissimilar metals. The laser metal deposition (LMD)-wire arc additive manufacturing… Click to show full abstract

Bimetallic structures manufactured by direct deposition have a defect due to the sudden change in the microstructure and properties of dissimilar metals. The laser metal deposition (LMD)-wire arc additive manufacturing (WAAM) process can alleviate the defect between two different materials by depositing the functionally graded material (FGM) layer, such as a thin intermediate layer using LMD and can be used to fabricate bimetallic structures at high deposition rates with relatively low costs using WAAM. In this study, the LMD-WAAM process was performed, and the microstructure of the fabricated bimetallic structure of IN625-SUS304L was investigated. The microstructure of the FGM zone of the LMD-WAAM sample was mainly fine equiaxed dendrite morphologies. In contrast, coarse columnar dendrite morphologies constituted the WAAM zone. The composition of the major alloying elements of the LMD-WAAM sample gradually changed with the height of the deposited layer. The microhardness of the LMD-WAAM sample tended to increase with an increasing Inconel content. In the case of the LMD-WAAM sample, the fracture occurred near the interface between 25% IN625 and 0% IN625; in the WAAM sample, the final fracture occurred in SUS304L near the interface. The tensile strength of the LMD-WAAM samples was inversely proportional to the laser power. The results showed that the LMD-WAAM samples had 8% higher tensile strength than the samples fabricated using only WAAM.

Keywords: deposition; waam; lmd waam; additive manufacturing

Journal Title: Materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.