LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Low-Temperature Synthesis of Cu-Doped Anatase TiO2 Nanostructures via Liquid Phase Deposition Method for Enhanced Photocatalysis

Photo from wikipedia

Titanium dioxide (TiO2) photocatalysis can harness the energy from sunlight, providing a solution to many green- and energy-related problems. In this study, we aimed to produce Cu doped TiO2 (Cu-TiO2)… Click to show full abstract

Titanium dioxide (TiO2) photocatalysis can harness the energy from sunlight, providing a solution to many green- and energy-related problems. In this study, we aimed to produce Cu doped TiO2 (Cu-TiO2) structures at a low temperature (~70 °C) under atmospheric pressure based on liquid phase deposition. The products prepared with Cu nitrate exhibited anatase-phase TiO2 with the presence of Cu, and the particles showed a waxberry-like structure. Changing the Cu nitrate concentration allowed control of the atomic concentration; we confirmed ~1.3 atm.% of Cu ions in the product when we applied 10 mM in the precursor solution. By doping Cu, the light absorption edge shifted to 440 nm (~2.9 eV), and we proved the photocatalytic reaction through action spectral measurement. We observed the decomposition of acetaldehyde into CO2 on Cu-TiO2 photocatalysts, which produced optimized improvements in photocatalytic activity at Cu dopant levels between 0.2 and 0.4 atm.%. This study demonstrates that the liquid phase deposition technique can be used for doping metallic ions into TiO2, which shows promise for preparing novel and unique nanomaterials as visible light photocatalysts.

Keywords: liquid phase; low temperature; phase deposition; tio2; phase

Journal Title: Materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.