LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improvements in Temperature Uniformity in Carbon Fiber Composites during Microwave-Curing Processes via a Recently Developed Microwave Equipped with a Three-Dimensional Motion System

Photo from wikipedia

Curing processes for carbon-fiber-reinforced polymer composites via microwave heating are promising alternatives to conventional thermal curing because this technology results in nonhomogeneous temperature distributions, which hinder its further development in… Click to show full abstract

Curing processes for carbon-fiber-reinforced polymer composites via microwave heating are promising alternatives to conventional thermal curing because this technology results in nonhomogeneous temperature distributions, which hinder its further development in industries. This paper proposes a novel method for improving heating homogeneities by employing three-dimensional motion with respect to the prepreg laminate used in the microwave field by using a recently developed microwave system. The maximum temperature deviation on the surface of the laminate can be controlled within 8.7 °C during the entire curing process, and it produces an average heating rate of 1.42 °C/min. The FT−IR analyses indicate that microwave heating would slightly influence hydroxyl and methylene contents in the cured laminate. The DMA measurements demonstrate that the glass transition temperatures can be improved by applying proper microwave-curing processes. Optical microscopy and mechanical tests reveal that curing the prepreg laminate by using a multistep curing process that initially cures the laminate at the resin’s lowest viscosity for 10 min followed by curing the laminate at a high temperature for a short period of time would be favorable for yielding a sample with low void contents and the desired mechanical properties. All these analyses are supposed to prove the feasibility of controlling the temperature difference during microwave-curing processes within a reasonable range and provide a cured laminate with improved properties compared with conventional thermally cured products.

Keywords: microwave; dimensional motion; microwave curing; carbon fiber; three dimensional; curing processes

Journal Title: Materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.