Oxide metallurgy technology can improve the microstructure of a coarse-grained heat-affected zone (CGHAZ) but introduces extra inclusions. Local corrosion behavior of the CGHAZ of a Zr–Ti–Al–RE deoxidized steel was investigated… Click to show full abstract
Oxide metallurgy technology can improve the microstructure of a coarse-grained heat-affected zone (CGHAZ) but introduces extra inclusions. Local corrosion behavior of the CGHAZ of a Zr–Ti–Al–RE deoxidized steel was investigated in this work using theoretical calculations and experimental verification. The modified inclusions have a (Zr–Mg–Al–Ca–RE)Ox core claded by a CaS and TiN shell. CaS dissolves first, followed by the oxide core, leaving TiN parts. This confirms that the addition of rare earth can reduce lattice distortion and prevent a galvanic couple between the inclusions and the matrix, while the chemical dissolution of CaS causes localized acidification, resulting in the pitting corrosion initiation.
               
Click one of the above tabs to view related content.