LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Decarburization in Laser Surface Hardening of AISI 420 Martensitic Stainless Steel

Photo from wikipedia

Decarburization deteriorates the surface mechanical properties of steel. It refers to the loss of carbon from steel’s surface when exposed to an open-air environment in elevated-temperature conditions. Despite the short… Click to show full abstract

Decarburization deteriorates the surface mechanical properties of steel. It refers to the loss of carbon from steel’s surface when exposed to an open-air environment in elevated-temperature conditions. Despite the short interaction time and fast thermal cycle of the laser surface-hardening process, decarburization may still occur. This paper investigates if decarburization occurs during the laser surface hardening of AISI 420 martensitic stainless steel. For comparison, surface-hardening results and decarburizations in a conventional air furnace-heated hardening process (water-quenched and air-cooled) of the same steel material were also investigated. Decarburization seems to have occurred in the laser surface hardening of AISI 420SS. However, the decarburization might not be significant, as the hardness of the steel’s surface was increased more than three times to 675 HV during the laser surface hardening, and the hardness drop due to decarburization was estimated to be only 3% with the decarburization depth of 40 μm. Simulations using ThermoCalc software to get the carbon concentration profiles along the depth for both laser-hardened and furnace-heated samples were also investigated.

Keywords: steel; laser surface; surface; surface hardening; decarburization

Journal Title: Materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.