LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigation of the Tribological Behaviour of Various AMC Surfaces against Brake Lining Material

Photo from wikipedia

AlSi7Mg/SiCp aluminium matrix composites (AMCs) with a high ceramic content (35 vol.%) that were produced by using the field-assisted sintering technique (FAST) were subjected to tribological preconditioning and evaluated as… Click to show full abstract

AlSi7Mg/SiCp aluminium matrix composites (AMCs) with a high ceramic content (35 vol.%) that were produced by using the field-assisted sintering technique (FAST) were subjected to tribological preconditioning and evaluated as a potential lightweight material to substitute grey cast iron brake discs. However, since an uncontrolled running-in process of the AMC surface can lead to severe wear and thus to failure of the friction system, AMC surfaces cannot be used directly after finishing and have to be preconditioned. A defined generation of a tribologically conditioned surface (tribosurface) is necessary, as was the aim in this study. To simulate tribological conditions in automotive brake systems, the prepared AMC samples were tested in a pin-on-disc configuration against conventional brake lining material under dry sliding conditions. The influence of the surface topography generated by face turning using different indexable inserts and feeds or an additional plasma electrolytic treatment was investigated at varied test pressures and sliding distances. The results showed that the coefficient of friction remained nearly constant when the set pressure was reached, whereas the initial topography of the samples studied by SEM varied substantially. A novel approach based on analysing the material ratio determined by 3D surface measurement was developed in order to obtain quantitative findings for industrial application.

Keywords: amc surfaces; topography; surface; material; brake lining; lining material

Journal Title: Materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.