Water is the most important life-giving resource on earth. Nowadays, intensive growth of the world population has resulted in increased water consumption and the production of wastewater. Additionally, the presence… Click to show full abstract
Water is the most important life-giving resource on earth. Nowadays, intensive growth of the world population has resulted in increased water consumption and the production of wastewater. Additionally, the presence of pharmaceuticals in treated conventional wastewater or even in the environment is strictly indicating that present techniques of wastewater treatment are not efficient enough and are not designed to remove such pollutants. Scarce water resources in the world are the main driving force for the innovation of novel techniques of water and wastewater treatment. Photocatalysis, as one of the advanced oxidation processes, enables the transformation of recalcitrant and toxic pollutants into CO2, water, and inorganic salts. In the present paper, the photocatalytic oxidation of β-blockers—metoprolol and propranolol—are described. For photocatalytic oxidation, novel TiO2 photocatalysts modified with biochar were used. Photocatalysts were prepared by sol-gel method and the effect of photocatalysts type, presence of inorganic ions, dissolved organic matter, and different water matrix was established. The results indicate that using only the decrease in the tested pollutant concentration is not effective enough in establishing the treatment method’s safety. There is a need to use additional testing such as ecotoxicity tests; however, the key parameter is the properly chosen tested organism.
               
Click one of the above tabs to view related content.