LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hydrothermally Grown MoS2 as an Efficient Electrode Material for the Fabrication of a Resorcinol Sensor

Photo by armandoascorve from unsplash

Recently, the active surface modification of glassy carbon electrodes (GCE) has received much attention for the development of electrochemical sensors. Nanomaterials are widely explored as surface-modifying materials. Herein, we have… Click to show full abstract

Recently, the active surface modification of glassy carbon electrodes (GCE) has received much attention for the development of electrochemical sensors. Nanomaterials are widely explored as surface-modifying materials. Herein, we have reported the hydrothermal synthesis of molybdenum disulfide (MoS2) and its electro-catalytic properties for the fabrication of a resorcinol sensor. Structural properties such as surface morphology of the prepared MoS2 was investigated by scanning electron microscopy and phase purity was examined by employing the powder X-ray diffraction technique. The presence of Mo and S elements in the obtained MoS2 was confirmed by energy-dispersive X-ray spectroscopy. Finally, the active surface of the glassy carbon electrode was modified with MoS2. This MoS2-modified glassy carbon electrode (MGC) was explored as a potential candidate for the determination of resorcinol. The fabricated MGC showed a good sensitivity of 0.79 µA/µMcm2 and a detection limit of 1.13 µM for the determination of resorcinol. This fabricated MGC also demonstrated good selectivity, and stability towards the detection of resorcinol.

Keywords: glassy carbon; fabrication resorcinol; mos2; resorcinol sensor; resorcinol

Journal Title: Materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.