Magnesium oxysulfate (MOS), mainly composed of magnesium oxide and magnesium sulfate, is a kind of gas-hardening cementing material with low energy consumption and CO2 emissions. In order to develop environment-friendly… Click to show full abstract
Magnesium oxysulfate (MOS), mainly composed of magnesium oxide and magnesium sulfate, is a kind of gas-hardening cementing material with low energy consumption and CO2 emissions. In order to develop environment-friendly cement-based materials, MOS needs to be studied systematically. The paper mainly investigates the influence of citric acid (a retarder) on the working and mechanical properties of MOS paste. In this study, the setting time of fresh MOS paste is determined. The flexural and compressive strengths of hardened specimens exposed to the environment of water dry-wet (D-W) alternations, freeze-thaw (F-T) cycles, and sulfate D-W alternations are investigated. Furthermore, the drying shrinkage (D-S) rate of MOS paste is tested for 3 days and 28 days. The specimens are cured in standard or CO2 curing environments. A scanning electron microscope energy spectrum (SEM-EDS) is obtained to analyze the morphology of hydration products. Results show that citric acid can increase the setting time of MOS paste. The citric acid and CO2 curing have a positive effect on the mechanical strengths and the resistance to erosion by water, F-T cycles, and sulfate D-W alternations. The D-S rate decreased in relation to the increasing dosages of citric acid and increased with CO2 curing. MOS with 0.3% of the total binder material mass shows the best erosion resistance. As observed in the results of SEM-EDS, the CO2 curing and the citric acid can make the hydration products denser.
               
Click one of the above tabs to view related content.