In this paper, the superplastic behavior of the two-phase titanium alloy VT6 with an ultrafine-grained (UFG) structure produced by equal-channel angular pressing is examined. The deformation of specimens with a… Click to show full abstract
In this paper, the superplastic behavior of the two-phase titanium alloy VT6 with an ultrafine-grained (UFG) structure produced by equal-channel angular pressing is examined. The deformation of specimens with a UFG structure was performed by upsetting in a temperature range of 650–750 °C and strain rate range of 1 × 10−4–5 × 10−1 s−1. Under these conditions, an increased strain-rate sensitivity coefficient m was observed. The calculation of apparent activation energy showed values in a range of 160–200 kJ/mol while the superplastic flow of the VT6 alloy was occurring. When superplastic behavior (SPB) was impeded, the energy Q grew considerably, indicating a change in mechanism from grain-boundary sliding (GBS) to bulk diffusion. A change in temperature and strain rate influenced the development of superplastic flow and the balance of relaxation processes. Microstructural analysis shows that the UFG state is preserved at upsetting temperatures of 650 and 700 °C. A decrease in strain rate and/or an increase in upsetting temperature promoted a more active development of recrystallization and grain growth, as well as α2-phase formation. In a certain temperature and strain-rate range of the UFG VT6 alloy, α2-phase plates were found, the formation of which was controlled by diffusion. The effect of the α2-phase on the alloy’s mechanical behavior is discussed.
               
Click one of the above tabs to view related content.