LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Local Maxima in Martensite Start Temperatures in the Transition Region between Lath and Plate Martensite in Fe-Ni Alloys

Photo from wikipedia

In the binary Fe-rich Fe-Ni system, martensite start temperatures MS decrease from 500 to 200 K when Ni concentrations increase from 20 to 30 at.%. It is well known that… Click to show full abstract

In the binary Fe-rich Fe-Ni system, martensite start temperatures MS decrease from 500 to 200 K when Ni concentrations increase from 20 to 30 at.%. It is well known that alloys with Ni concentrations below 28.5 at.% exhibit lath martensite (LM) microstructures (athermal transformation, small crystals, accommodation by dislocations). Above this concentration, plate martensite (PM) forms (burst-like transformation, large crystals, accommodation by twins). The present work is based on a combination of (i) ingot metallurgy for the manufacturing of Fe-Ni alloys with varying Ni-concentrations, (ii) thermal analysis to measure phase transformation temperatures with a special focus on MS, and (iii) analytical orientation imaging scanning electron microscopy for a quantitative description of microstructures and crystallographic features. For Ni-concentrations close to 28.5 at.%, the descending MS-curve shows a local maximum, which has been overlooked in prior works. Beyond the local maximum, MS temperatures decrease again and follow the overall trend. The local maximum is associated with the formation of transition martensite (TM) microstructure, which exhibits LM and PM features. TM forms at higher MS temperatures, as it is accommodated by simultaneous twinning and dislocation slip. An adopted version of the Clausius-Clapeyron equation explains the correlation between simultaneous accommodation and increased transformation temperatures.

Keywords: martensite start; start temperatures; plate martensite; martensite; transformation

Journal Title: Materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.