LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Guard Ring Design to Prevent Edge Breakdown in Double-Diffused Planar InGaAs/InP Avalanche Photodiodes

Photo from wikipedia

We report on the design of an attached guard ring (AGR) and a floating guard ring (FGR) in a planar separate absorption, grading, charge, and multiplication In0.53Ga0.47As/InP avalanche photodiode to… Click to show full abstract

We report on the design of an attached guard ring (AGR) and a floating guard ring (FGR) in a planar separate absorption, grading, charge, and multiplication In0.53Ga0.47As/InP avalanche photodiode to prevent premature edge breakdowns. The depths of the two Zn diffusions were utilized to manipulate the guard ring structures. Results from TCAD simulation indicate that the optimal AGR diffusion depth is right at the turning point where the breakdown current shifts from the edge of active region to the AGR region. The devices with optimal AGR depth contain significantly higher breakdown voltages than those of devices either with shallower—or without any— AGR. For the FGR design, a series of devices with different spacings between AGR and FGR and different FGR opening widths for diffusion were fabricated and characterized. We show that when the spacing is longer than the critical value, the breakdown voltage can increase ~1.5 V higher than those of the APD devices without FGR. In addition, the wider the FGR opening width, the higher the breakdown voltage. TCAD simulations were also performed to study the effect of FGR, but showed less pronounced improvements, which could be due the discrepancy between the calculated and experimental diffusion profile.

Keywords: design; inp avalanche; prevent; guard ring

Journal Title: Materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.