LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of In Situ Mg-Sialon on the Oxidation Behavior of Low-Carbon MgO-C Refractories

Photo from wikipedia

The in situ Mg-sialon in low-carbon MgO-C refractories was studied with respect to its oxidation behavior and mechanism at 1500 °C. The results indicated that the oxidation index and rate… Click to show full abstract

The in situ Mg-sialon in low-carbon MgO-C refractories was studied with respect to its oxidation behavior and mechanism at 1500 °C. The results indicated that the oxidation index and rate constant of low-carbon MgO-C refractories with Mg-sialon were 26.2% and 0.51 × 10−3 cm2/min at 1500 °C for 2 h, respectively. The formation of a dense MgO-Mg2SiO4-MgAl2O4 protective layer contributed to considerable oxidation resistance, and the generation of this thicker layer was due to the combined volume effect of Mg2SiO4 and MgAl2O4. The reduced porosity and more complex pore structure were also found in the refractories with Mg-sialon. Therefore, further oxidation was restricted as the oxygen diffusion path was effectively blocked. This work proves the potential application of Mg-sialon in improving the oxidation resistance of low-carbon MgO-C refractories.

Keywords: mgo refractories; oxidation; carbon mgo; mgo; low carbon

Journal Title: Materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.