LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Study of Al2O3/MgO Composite Films Deposited by FCVA for Thin-Film Encapsulation

Photo from wikipedia

Al2O3 and MgO composite (Al2O3/MgO) films were rapidly deposited at low temperatures using filtered cathode vacuum arc (FCVA) technology, aiming to achieve good barrier properties for flexible organic light emitting… Click to show full abstract

Al2O3 and MgO composite (Al2O3/MgO) films were rapidly deposited at low temperatures using filtered cathode vacuum arc (FCVA) technology, aiming to achieve good barrier properties for flexible organic light emitting diodes (OLED) thin-film encapsulation (TFE). As the thickness of the MgO layer decreases, the degree of crystallinity decreases gradually. The 3:2 Al2O3:MgO layer alternation type has the best water vapor shielding performance, and the water vapor transmittance (WVTR) is 3.26 × 10−4 g·m−2·day−1 at 85 °C and 85% R.H, which is about 1/3 of that of a single layer of Al2O3 film. Under the action of ion deposition, too many layers will cause internal defects in the film, resulting in decreased shielding ability. The surface roughness of the composite film is very low, which is about 0.3–0.5 nm depending on its structure. In addition, the visible light transmittance of the composite film is lower than that of a single film and increases with the increase in the number of layers.

Keywords: al2o3 mgo; film encapsulation; film; thin film; mgo composite

Journal Title: Materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.