LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Fracture Load as a Function of the Material Thickness: The Key to Computing the Strength of Monolithic All-Ceramic Materials?

Photo from wikipedia

The thickness of a material has a significant impact on its fracture load. The aim of the study was to find and describe a mathematical relationship between the material thickness… Click to show full abstract

The thickness of a material has a significant impact on its fracture load. The aim of the study was to find and describe a mathematical relationship between the material thickness and the fracture load for dental all-ceramics. In total, 180 specimens were prepared from a leucite silicate ceramic (ESS), a lithium disilicate ceramic (EMX), and a 3Y-TZP zirconia ceramic (LP) in five thicknesses (0.4, 0.7, 1.0, 1.3, and 1.6 mm; n = 12). The fracture load of all specimens was determined using the biaxial bending test according to the DIN EN ISO 6872. The regression analyses for the linear, quadratic, and cubic curve characteristics of the materials were conducted, and the cubic regression curves showed the best correlation (coefficients of determination (R2): ESS R2 = 0.974, EMX R2 = 0.947, LP R2 = 0.969) for the fracture load values as a function of the material thickness. A cubic relationship could be described for the materials investigated. Applying the cubic function and material-specific fracture-load coefficients, the respective fracture load values can be calculated for the individual material thicknesses. These results help to improve and objectify the estimation of the fracture loads of restorations, to enable a more patient- and indication-centered situation-dependent material choice.

Keywords: function material; fracture load; material; material thickness

Journal Title: Materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.