LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microstructures and Enhanced Mechanical Properties of (Zr, Ti)(C, N)-Based Nanocomposites Fabricated by Reactive Hot-Pressing at Low Temperature

Photo from wikipedia

Dense and enhanced mechanical properties (Zr, Ti)(C, N)-based composites were fabricated using ZrC, TiC0.5N0.5, and Si powders as the raw powders by reactive hot-pressing at 1500–1700 °C. At the low… Click to show full abstract

Dense and enhanced mechanical properties (Zr, Ti)(C, N)-based composites were fabricated using ZrC, TiC0.5N0.5, and Si powders as the raw powders by reactive hot-pressing at 1500–1700 °C. At the low sintering temperature, both (Zr, Ti)(C, N) and (Ti, Zr)(C, N) solid solutions were formed in the composites by adjusting the ratio of ZrC to TiC0.5N0.5. During the sintering process, the Si added at a rate of 5 mol% reacted with ZrC and TiC0.5N0.5 to generate SiC. With the increase in Si addition, it was found that the residual β-ZrSi was formed, which greatly reduced the flexural strength of composites but improved their toughness. The reaction and solid-solution-driven inter-diffusion processes enhanced mass transfer and promote densification. The solid solution strengthening and grain refinement improved the mechanical properties. The ZrC–47.5 mol% TiC0.5N0.5–5 mol% Si (raw powder) composite possessed excellent comprehensive performance. Its flexural strength, Vickers hardness, and fracture toughness were 508 ± 33 MPa, 24.5 ± 0.7 GPa, and 3.8 ± 0.1 MPa·m1/2, respectively. These reached or exceeded the performance of most (Zr, Ti)(C, N) ceramics reported in previous studies. The lattice distortion, abundant grain boundaries, and fine-grained microstructure may make it possible for the material to be resistant to radiation.

Keywords: hot pressing; reactive hot; properties based; enhanced mechanical; tic0 5n0; mechanical properties

Journal Title: Materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.