LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experiment Study on the Effect of Aluminum Sulfate-Based Alkali-Free Accelerator and the w/c on Cement Hydration and Leaching

Photo from wikipedia

The alkali-free accelerator based on aluminum sulfate is widely used in shotcrete in tunnels. Long-term Ca-leaching of shotcrete may adversely affect the tunnels in a water-rich mountain. It is necessary… Click to show full abstract

The alkali-free accelerator based on aluminum sulfate is widely used in shotcrete in tunnels. Long-term Ca-leaching of shotcrete may adversely affect the tunnels in a water-rich mountain. It is necessary to examine further the impact of the AS accelerator and w/c on cement hydration and leaching. In this study, all the cement pastes were cured in the environment with R.H. > 95% and 20 ± 1 °C for 60 days and leached in a running water test with 6 M NH4Cl at 1 cm/s. The hydration kinetics was characterized by isothermal calorimetry. Additionally, the microstructural and mineralogical alterations were characterized by XRD, SEM, MIP, and N2 absorption. The results show that (1) the AS accelerator affected the hydration kinetics of cement by stimulating early hydration and delaying the late silicate hydration, resulting in AS-accelerated cement pastes with rougher pore structure. As a result, the higher the dose of AS accelerator, the faster the cement pastes will leach. (2) Hydration kinetics of the accelerated cement are not affected by the w/c. The AS-accelerated cement pastes with lower w/c have a denser pore structure. So, the reduction in the w/c contributes to leaching resistance.

Keywords: hydration; cement; free accelerator; alkali free; aluminum sulfate

Journal Title: Materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.