LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Al Concentration on Structural, Optical and Electrical Properties of (Gd, Al) Co-Doped ZnO and Its n-ZnO/p-Si (1 0 0) Heterojunction Structures Prepared via Co-Sputtering Method

Photo from wikipedia

Heterojunction structures of n-ZnO/p-Si were prepared through the growth of undoped ZnO and (Gd, Al) co-doped ZnO films onto p-type Si (1 0 0) substrates, using a co-sputtering method. The… Click to show full abstract

Heterojunction structures of n-ZnO/p-Si were prepared through the growth of undoped ZnO and (Gd, Al) co-doped ZnO films onto p-type Si (1 0 0) substrates, using a co-sputtering method. The structural and optical properties of the Gd-doped ZnO films were studied as a function of different Al doping concentrations. The X-ray diffraction profiles indicated that the films had a nanocrystalline structure of ZnO with a (0 0 2) preferential orientation. An increase in the Al doping concentration deteriorated the (0 0 2) diffraction peak intensity. The transmittance measurements in the UV–Vis wavelength range indicated that the film’s optical gap increased with increase in Al doping concentration. The heterojunction parameters were evaluated using the current–voltage (I-V) characterization carried out of the fabricated n-ZnO/p-Si heterostructure, in dark conditions at room temperature. From these measurements, the n-ZnO-based DMS/p-Si heterojunction diode with the use of (Gd, Al) co-doped ZnO film showed the lowest leakage current of 1.28 × 10−8 A and an ideality factor η of 1.11, close to the ideal diode behavior of η = 1, compared to the n-Gd-doped ZnO/p-Si and n-undoped ZnO/p-Si heterojunction diodes.

Keywords: sputtering method; zno; concentration; heterojunction structures; doped zno

Journal Title: Materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.