LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Charge Distribution, Seebeck Coefficient, and Carrier Concentration of CuCr0.99Ln0.01S2 (Ln = Dy–Lu)

The atom oxidation states were determined using the binding energies of the core S2p-, Cu2p-, Cr2p-, and Ln3d-levels in CuCr0.99Ln0.01S2 (Ln = Dy–Lu) solid solutions. The charge distribution on the… Click to show full abstract

The atom oxidation states were determined using the binding energies of the core S2p-, Cu2p-, Cr2p-, and Ln3d-levels in CuCr0.99Ln0.01S2 (Ln = Dy–Lu) solid solutions. The charge distribution on the matrix elements (Cu, Cr, and S) remained unaffected after cationic substitution. The sulfur atoms were found to be in the S2− oxidation state, the copper–Cu+, and the chromium–Cr3+. The cationic substitution of the initial CuCrS2-matrix occurred via the isovalent mechanism. The obtained results were compared with the electrophysical properties for CuCr0.99Ln0.01S2. The measured carrier concentration was from 1017 to 1018 cm−3. The largest Seebeck coefficient value of 157 µV/K was measured for CuCr0.99Yb0.01S2 at 500 K. The cationic substitution with lanthanides allowed one to enhance the Seebeck coefficient of the initial CuCrS2-matrix.

Keywords: carrier concentration; seebeck coefficient; 99ln0 01s2; cucr0 99ln0; charge distribution

Journal Title: Materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.