LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Electrode Induction Melting Gas Atomization on Powder Quality: Satellite Formation Mechanism and Pressure

Photo from wikipedia

Electrode induction melting gas atomization (EIGA) is a wildly applied method for preparing ultra-clean and spherical metal powders, which is a completely crucible-free melting and atomization process. Based on several… Click to show full abstract

Electrode induction melting gas atomization (EIGA) is a wildly applied method for preparing ultra-clean and spherical metal powders, which is a completely crucible-free melting and atomization process. Based on several experiments, we found that although the sphericity of metal powders prepared by EIGA was higher than that of other atomization methods, there were still some satellite powders. To understand the formation mechanism of the satellite, a computational fluid dynamics (CFD) approach FLUENT and a discrete particle model (DPM) were developed to simulate the gas atomization process, and several EIGA experiments with different argon pressures (2.5–4.0 MPa) were designed. A numerical simulation of the gas-flow field verified the formation trajectory of satellites, and the Hall flow rate of the powder produced under different pressures was 13.3, 13.8, 15.6, and 16.8, which were consistent with the prediction of the numerical simulation. This study provides theoretical support for understanding the satellite formation mechanism and improving powder sphericity in the EIGA process.

Keywords: formation mechanism; atomization; gas; gas atomization

Journal Title: Materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.