LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spent Yeast-Derived 3D Porous Carbon Skeleton as Low-Cost D-Mannitol Supporting Material for Medium Temperature Thermal Energy Storage

Photo from wikipedia

Shape-stable phase change materials (ss-PCMs) are extensively applied in renewable energy storage. The core for realizing high latent heat and good thermal stability of ss-PCMs is the designation of suitable… Click to show full abstract

Shape-stable phase change materials (ss-PCMs) are extensively applied in renewable energy storage. The core for realizing high latent heat and good thermal stability of ss-PCMs is the designation of suitable supporting skeletons that can effectively preserve the PCMs from leaking out. In this study, ss-PCMs impregnated by D-mannitol were prepared using a waste yeast-derived carbon (YC) as the support material. YC possesses a large surface area (669.90 m2/g), which can provide sufficient phase transition space and nucleation sites for D-mannitol. The results indicated that a reduced supercooling of 44.76 °C for YC/D-mannitol ss-PCMs can be realized. The ss-PCMs also exhibited good cycling stability, with latent heat loss rates of 4.00% and 2.15% after 200 thermal cycles. We further demonstrate that YC provides restricted space for mannitol to inhibit the supercooling mechanism. The YC/D-mannitol ss-PCMs exhibited great promise for solar heat storage and industrial waste heat recovery in the medium temperature domain.

Keywords: medium temperature; mannitol; yeast derived; storage; pcms; energy storage

Journal Title: Materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.