LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanical Performance and Chloride Penetration of Calcium Sulfoaluminate Concrete in Marine Tidal Zone

Photo by kellysikkema from unsplash

The enhancement of the durability of sulfoaluminate cement (CSA) in marine environments is of great importance. To this end, an investigation was carried out involving the placement of CSA concrete… Click to show full abstract

The enhancement of the durability of sulfoaluminate cement (CSA) in marine environments is of great importance. To this end, an investigation was carried out involving the placement of CSA concrete in the tidal zone of Zhairuoshan Island, Zhoushan, China, and subjected to a 20-month marine tidal exposure test. The comparison was made with ordinary Portland cement (OPC) concrete to evaluate the effectiveness of the former. The test findings indicate that the compressive strength of both types of concrete is reduced by seawater dry-wet cycling, and the porosity of the surface concrete is increased. However, the compressive strength of CSA concrete is observed to be more stable under long-term drying–wetting cycles. When the ettringite in the CSA surface concrete is decomposed due to carbonization and alkalinity reduction, its products will react with Ca2+ and SO42− in seawater to regenerate ettringite to fill in the concrete pores, making the concrete strength more stable and hindering chlorine penetration. Furthermore, CSA concrete exhibits a higher capillary absorption capacity than OPC concrete, which results in chloride accumulation on its surface. However, the diffusion capacity of chloride in CSA concrete is significantly lower than that in OPC concrete.

Keywords: csa concrete; tidal zone; sulfoaluminate; marine tidal; concrete; marine

Journal Title: Materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.