LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Specimen Size Effect on the Tensile Properties of Rolled Steel of Long-Term-Operated Portal Crane

Photo from wikipedia

This paper presents the research results on the mechanical behavior of the low-carbon rolled steel of a sea portal crane after a 33-year operation depending on the operational stresses and… Click to show full abstract

This paper presents the research results on the mechanical behavior of the low-carbon rolled steel of a sea portal crane after a 33-year operation depending on the operational stresses and rolling direction in order to assess its serviceability. The tensile properties of steels were investigated using rectangular cross-section specimens with different thicknesses and the same width. Strength indicators were slightly dependent on the considered factors (operational conditions, the cutting direction, and thickness of specimens). However, a clear trend of higher ultimate strength for thinner specimens was noticed, especially in the case of more brittle material due to its operational degradation. Plasticity of the tested steel specimens was more sensitive to the influence of the above-mentioned factors than strength but less sensitive than impact toughness. Uniform elongation was slightly less for thinner specimens regardless of the investigated steel state or the orientation of specimens relative to the rolling direction. The post-necking elongation was lower for transversal specimens compared with longitudinal ones, and the effect was more significant when testing steel with the lowest brittle fracture resistance. Among the tensile properties, non-uniform elongation was demonstrated to be the most effective for assessing the operational changes in the state of rolled steels.

Keywords: effect; steel; rolled steel; tensile properties; portal crane

Journal Title: Materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.