LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Illumination of Interior Spaces through Structures Made of Unified Slabs of High-Performance Light-Transmitting Concrete with Embedded Optical Fibers

Photo from wikipedia

Light-transmitting concrete as a building material already exists in many forms, but its light properties and the possibilities of using it to improve the lighting of interior spaces have not… Click to show full abstract

Light-transmitting concrete as a building material already exists in many forms, but its light properties and the possibilities of using it to improve the lighting of interior spaces have not been investigated in detail yet. This paper focuses on the illumination of interior spaces using constructions made of light-transmitting concrete, which will allow light to pass between individual spaces. The experimental measurements carried out are divided into two typical situations using reduced room models. The first part of the paper focuses on the illumination of the room through the penetration of daylight through the ceiling made of light-transmitting concrete. The second part of the paper investigates the transmission of artificial light from one room to another through a non-load-bearing dividing structure composed of unified slabs of light-transmitting concrete. For the experiments, several models and samples were created for comparison. The first step of the experiment was to create slabs of light-transmitting concrete. While there are many options to produce such a slab, the best option is to use high-performance concrete with glass-fiber reinforcement, which improves the load transfer properties, and plastic optical fibers for light transmission. By adding optical fibers, we can achieve the transmission of light between any two spaces. For both of the experiments, we used reduced-scale models of rooms. Slabs with dimensions of 250 × 250 × 20 mm and 250 × 250 × 30 mm were used in three versions: concrete slabs with optical fibers, concrete slabs with air holes and solid slabs. The experiment measured and compared the level of illumination at several points in the model as it passed through each of the three different slabs. Based on the results of these experiments, it was concluded that the interior level of illumination of any space can be improved by using light-transmitting concrete, especially those without access to natural light. The experiment also assessed the strength properties of the slabs in relation to their intended use and compares them with the properties of stone slabs used as cladding.

Keywords: illumination interior; light transmitting; transmitting concrete; optical fibers; interior spaces

Journal Title: Materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.