This study investigates the montmorillonite (MMT) content, rotational viscosity, and colloidal index of sodium montmorillonite (Na-MMT) as a function of the sodium agent dosage, reaction time, reaction temperature, and stirring… Click to show full abstract
This study investigates the montmorillonite (MMT) content, rotational viscosity, and colloidal index of sodium montmorillonite (Na-MMT) as a function of the sodium agent dosage, reaction time, reaction temperature, and stirring time. Na-MMT was modified using different octadecyl trimethyl ammonium chloride (OTAC) dosages under optimal sodification conditions. The organically modified MMT products were characterized via infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy. The results show that the Na-MMT with good properties (i.e., the maximum rotational viscosity and highest Na-MMT content with no decrease in the colloid index) was obtained at a 2.8% sodium carbonate dosage (measured based on the MMT mass), a temperature of 25 °C, and a reaction time of two hours. Upon organic modification of the optimized Na-MMT, OTAC entered the NA-MMT interlayer, and the contact angle was increased from 20.0° to 61.4°, the layer spacing was increased from 1.58 to 2.47 nm, and the thermal stability was conspicuously increased. Thus, MMT and Na-MMT were modified by the OTAC modifier.
               
Click one of the above tabs to view related content.