LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multiphysics Modeling and Simulation of a Light-Controlled Variable Damping System

Photo by ale_s_bianchi from unsplash

In this paper, a light-controlled variable damping system (LCVDS) is proposed based on PLZT ceramics and electrorheological fluid (ERF). The mathematical models for the photovoltage of PLZT ceramics and the… Click to show full abstract

In this paper, a light-controlled variable damping system (LCVDS) is proposed based on PLZT ceramics and electrorheological fluid (ERF). The mathematical models for the photovoltage of PLZT ceramics and the hydrodynamic model for the ERF are established, and the relationship between the pressure difference at both ends of the microchannel and the light intensity is deduced. Then, simulations are conducted by applying different light intensities in the LCVDS to analyze the pressure difference at both ends of the microchannel using COMSOL Multiphysics. The simulation results show that the pressure difference at both ends of the microchannel increases with the increase in light intensity, which is consistent with results from the mathematical model established in this paper. The error rate of the pressure difference at both ends of the microchannel is within 13.8% between the theoretical and simulation results. This investigation lays the foundation for the application of light-controlled variable damping in future engineering.

Keywords: variable damping; light controlled; controlled variable; simulation

Journal Title: Materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.