We report on boron-related defects in the low-doped n-type (nitrogen-doped) 4H-SiC semitransparent Schottky barrier diodes (SBDs) studied by minority carrier transient spectroscopy (MCTS). An unknown concentration of boron was introduced… Click to show full abstract
We report on boron-related defects in the low-doped n-type (nitrogen-doped) 4H-SiC semitransparent Schottky barrier diodes (SBDs) studied by minority carrier transient spectroscopy (MCTS). An unknown concentration of boron was introduced during chemical vapor deposition (CVD) crystal growth. Boron incorporation was found to lead to the appearance of at least two boron-related deep-level defects, namely, shallow (B) and deep boron (D-center), with concentrations as high as 1 × 1015 cm−3. Even though the boron concentration exceeded the nitrogen doping concentration by almost an order of magnitude, the steady-state electrical characteristics of the n-type 4H-SiC SBDs did not deteriorate.
               
Click one of the above tabs to view related content.