LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Combustion Synthesis of Magnesium-Aluminum Oxynitride MgAlON with Tunable Composition

Photo from wikipedia

Magnesium-aluminum oxynitride MgAlON has garnered significant attention in recent years due to its unique properties and potential applications. Herein, we report a systematic study on the synthesis of MgAlON with… Click to show full abstract

Magnesium-aluminum oxynitride MgAlON has garnered significant attention in recent years due to its unique properties and potential applications. Herein, we report a systematic study on the synthesis of MgAlON with tunable composition by employing the combustion method. The Al/Al2O3/MgO mixture was combusted in nitrogen gas, and the effects of Al nitriding and oxidation by Mg(ClO4)2 on the exothermicity of the mixture, combustion kinetics, and phase composition of combustion products were investigated. Our results demonstrate that the MgAlON lattice parameter can be controlled by varying the AlON/MgAl2O4 ratio in the mixture, which corresponds to the MgO content in the combustion products. This work provides a new pathway for tailoring the properties of MgAlON, which may have significant implications in various technological applications. In particular, we reveal the dependence of the MgAlON lattice parameter on the AlON/MgAl2O4 ratio. The limitation of the combustion temperature by 1650 °C resulted in obtaining submicron powders with a specific surface area of about 3.8 m/g2.

Keywords: aluminum oxynitride; composition; magnesium aluminum; combustion; mgalon; oxynitride mgalon

Journal Title: Materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.