Based on the indirect hot-stamping test system, the effect of pre-forming on the microstructure evolution (grain size, dislocation density, martensite phase transformation) and mechanical properties of the blank in indirect… Click to show full abstract
Based on the indirect hot-stamping test system, the effect of pre-forming on the microstructure evolution (grain size, dislocation density, martensite phase transformation) and mechanical properties of the blank in indirect hot stamping is systematically studied using ultra-high-strength steel 22MnB5. It is found that the average austenite grain size slightly decreases with the increase in pre-forming. After quenching, the martensite also becomes finer and more uniformly distributed. Although the dislocation density after quenching slightly decreases with the increase in pre-forming, the overall mechanical properties of the quenched blank are not greatly affected by pre-forming under the combined effect of the grain size and dislocation density. Then, this paper discusses the effect of the pre-forming volume on part formability in indirect hot stamping by manufacturing a typical beam part. According to the numerical simulations and experimental results, when the pre-forming volume increases from 30% to 90%, the maximum thickness thinning rate of the beam part decreases from 30.1% to 19.1%, and the final beam part has better formability and more uniform thickness distribution results when the pre-forming volume is 90%.
               
Click one of the above tabs to view related content.