LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quality of the Ceramic and Ni-Cr Alloy Joint after Al2O3 Abrasive Blasting

Photo from wikipedia

The purpose of this in vitro study was to determine the effect of airborne-particle abrasion process parameters on the strength of the Ni-Cr alloy–ceramic bond. One hundred and forty-four Ni-Cr… Click to show full abstract

The purpose of this in vitro study was to determine the effect of airborne-particle abrasion process parameters on the strength of the Ni-Cr alloy–ceramic bond. One hundred and forty-four Ni-Cr disks were airborne-particle abraded with 50, 110 and 250 µm Al2O3 at a pressure of 400 and 600 kPa. After treatment, the specimens were bonded to dental ceramics by firing. The strength of the metal–ceramic bond was determined using the shear strength test. The results were analyzed with three-way analysis of variance (ANOVA) and the Tukey honest significant difference (HSD) test (α = 0.05). The examination also considered the thermal loads (5000 cycles, 5–55 °C) to which the metal–ceramic joint is subjected during exploitation. There is a close correlation between the strength of the Ni-Cr alloy–dental ceramic joint and the alloy roughness parameters after abrasive blasting: Rpk (reduced peak height), Rsm (the mean spacing of irregularities), Rsk (skewness of the profile) and RPc (peak density). The highest strength of the Ni-Cr alloy surface bonding with dental ceramics under operating conditions is provided by abrasive blasting under 600 kPa pressure with 110 µm Al2O3 particles (p < 0.05). Both the abrasive blasting pressure and the particle size of the Al2O3 abrasive significantly affect the joint’s strength (p < 0.05). The most optimal blasting parameters are 600 kPa pressure with 110 µm Al2O3 particles (p < 0.05). They allow the highest bond strength between the Ni-Cr alloy and dental ceramics to be achieved.

Keywords: strength; al2o3 abrasive; strength alloy; abrasive blasting; alloy

Journal Title: Materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.