LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Failure Mechanism and Optimization of Metal-Supported Solid Oxide Fuel Cells

Photo from wikipedia

A solid oxide fuel cell (SOFC) is a clean, efficient energy conversion device with wide fuel applicability. Metal-supported solid oxide fuel cells (MS-SOFCs) exhibit better thermal shock resistance, better machinability,… Click to show full abstract

A solid oxide fuel cell (SOFC) is a clean, efficient energy conversion device with wide fuel applicability. Metal-supported solid oxide fuel cells (MS-SOFCs) exhibit better thermal shock resistance, better machinability, and faster startup than traditional SOFCs, making them more suitable for commercial applications, especially in mobile transportation. However, many challenges remain that hinder the development and application of MS-SOFCs. High temperature may accelerate these challenges. In this paper, the existing problems in MS-SOFCs, including high-temperature oxidation, cationic interdiffusion, thermal matching, and electrolyte defects, as well as lower temperature preparation technologies, including the infiltration method, spraying method, and sintering aids method, are summarized from different perspectives, and the improvement strategy of existing material structure optimization and technology integration is put forward.

Keywords: fuel; supported solid; metal supported; solid oxide; oxide fuel

Journal Title: Materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.