LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhancing Computational Accuracy in Surrogate Modeling for Elastic–Plastic Problems by Coupling S-FEM and Physics-Informed Deep Learning

Photo from wikipedia

Physics-informed neural networks (PINNs) provide a new approach to solving partial differential equations (PDEs), while the properties of coupled physical laws present potential in surrogate modeling. However, the accuracy of… Click to show full abstract

Physics-informed neural networks (PINNs) provide a new approach to solving partial differential equations (PDEs), while the properties of coupled physical laws present potential in surrogate modeling. However, the accuracy of PINNs in solving forward problems needs to be enhanced, and solving inverse problems relies on data samples. The smoothed finite element method (S-FEM) can obtain high-fidelity numerical solutions, which are easy to solve for the forward problems of PDEs, but difficult to solve for the inverse problems. To the best of the authors’ knowledge, there has been no prior research on coupling S-FEM and PINN. In this paper, a novel approach that couples S-FEM and PINN is proposed. The proposed approach utilizes S-FEM to synthesize high-fidelity datasets required for PINN inversion, while also improving the accuracy of data-independent PINN in solving forward problems. The proposed approach is applied to solve linear elastic and elastoplastic forward and inverse problems. The computational results demonstrate that the coupling of the S-FEM and PINN exhibits high precision and convergence when solving inverse problems, achieving a maximum relative error of 0.2% in linear elasticity and 5.69% in elastoplastic inversion by using approximately 10,000 data points. The coupling approach also enhances the accuracy of solving forward problems, reducing relative errors by approximately 2–10 times. The proposed coupling of the S-FEM and PINN offers a novel surrogate modeling approach that incorporates knowledge and data-driven techniques, enabling it to solve both forward and inverse problems associated with PDEs with high levels of accuracy and convergence.

Keywords: inverse problems; physics; surrogate modeling; coupling fem; approach

Journal Title: Mathematics
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.