Let (X,d,μ) be a space of homogenous type and L be a non-negative self-adjoint operator on L2(X) with heat kernels satisfying Gaussian upper bounds. In this paper, we introduce the… Click to show full abstract
Let (X,d,μ) be a space of homogenous type and L be a non-negative self-adjoint operator on L2(X) with heat kernels satisfying Gaussian upper bounds. In this paper, we introduce the variable Besov–Morrey space associated with the operator L and prove that this space can be characterized via the Peetre maximal functions. Then, we establish its atomic decomposition.
               
Click one of the above tabs to view related content.