Despite the success of deep learning models, it remains challenging for the over-parameterized model to learn good representation under small-sample-size settings. In this paper, motivated by previous work on out-of-distribution… Click to show full abstract
Despite the success of deep learning models, it remains challenging for the over-parameterized model to learn good representation under small-sample-size settings. In this paper, motivated by previous work on out-of-distribution (OoD) generalization, we study the representation learning problem from an OoD perspective to identify the fundamental factors affecting representation quality. We formulate a notion of “out-of-feature subspace (OoFS) noise” for the first time, and we link the OoFS noise in the feature extractor to the OoD performance of the model by proving two theorems that demonstrate that reducing OoFS noise in the feature extractor is beneficial in achieving better representation. Moreover, we identify two causes of OoFS noise and prove that the OoFS noise induced by random initialization can be filtered out via L2 regularization. Finally, we propose a novel data-dependent regularizer that acts on the weights of the fully connected layer to reduce noise in the representations, thus implicitly forcing the feature extractor to focus on informative features and to rely less on noise via back-propagation. Experiments on synthetic datasets show that our method can learn hard-to-learn features; can filter out noise effectively; and outperforms GD, AdaGrad, and KFAC. Furthermore, experiments on the benchmark datasets show that our method achieves the best performance for three tasks among four.
               
Click one of the above tabs to view related content.