Using the Laplace transform technique, we investigate the generalized solutions of the third-order Cauchy-Euler equation of the form t 3 y ′ ′ ′ ( t ) + a t… Click to show full abstract
Using the Laplace transform technique, we investigate the generalized solutions of the third-order Cauchy-Euler equation of the form t 3 y ′ ′ ′ ( t ) + a t 2 y ′ ′ ( t ) + b y ′ ( t ) + c y ( t ) = 0 , where a , b , and c ∈ Z and t ∈ R . We find that the types of solutions in the space of right-sided distributions, either distributional solutions or weak solutions, depend on the values of a, b, and c. At the end of the paper, we give some examples showing the types of solutions. Our work improves the result of Kananthai (Distribution solutions of the third order Euler equation. Southeast Asian Bull. Math. 1999, 23, 627–631).
               
Click one of the above tabs to view related content.