Recently, type 2 degenerate Euler polynomials and type 2 q-Euler polynomials were studied, respectively, as degenerate versions of the type 2 Euler polynomials as well as a q-analog of the… Click to show full abstract
Recently, type 2 degenerate Euler polynomials and type 2 q-Euler polynomials were studied, respectively, as degenerate versions of the type 2 Euler polynomials as well as a q-analog of the type 2 Euler polynomials. In this paper, we consider the type 2 degenerate q-Euler polynomials, which are derived from the fermionic p-adic q-integrals on Z p , and investigate some properties and identities related to these polynomials and numbers. In detail, we give for these polynomials several expressions, generating function, relations with type 2 q-Euler polynomials and the expression corresponding to the representation of alternating integer power sums in terms of Euler polynomials. One novelty about this paper is that the type 2 degenerate q-Euler polynomials arise naturally by means of the fermionic p-adic q-integrals so that it is possible to easily find some identities of symmetry for those polynomials and numbers, as were done previously.
               
Click one of the above tabs to view related content.