LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Geological Modeling Method Based on the Normal Dynamic Estimation of Sparse Point Clouds

Photo from wikipedia

The effect of geological modeling largely depends on the normal estimation results of geological sampling points. However, due to the sparse and uneven characteristics of geological sampling points, the results… Click to show full abstract

The effect of geological modeling largely depends on the normal estimation results of geological sampling points. However, due to the sparse and uneven characteristics of geological sampling points, the results of normal estimation have great uncertainty. This paper proposes a geological modeling method based on the dynamic normal estimation of sparse point clouds. The improved method consists of three stages: (1) using an improved local plane fitting method to estimate the normals of the point clouds; (2) using an improved minimum spanning tree method to redirect the normals of the point clouds; (3) using an implicit function to construct a geological model. The innovation of this method is an iterative estimation of the point cloud normal. The geological engineer adjusts the normal direction of some point clouds according to the geological law, and then the method uses these correct point cloud normals as a reference to estimate the normals of all point clouds. By continuously repeating the iterative process, the normal estimation result will be more accurate. Experimental results show that compared with the original method, the improved method is more suitable for the normal estimation of sparse point clouds by adjusting normals, according to prior knowledge, dynamically.

Keywords: estimation; sparse; method; point clouds; geological modeling

Journal Title: Mathematics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.