LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Bi-Level Programming Approach to the Location-Routing Problem with Cargo Splitting under Low-Carbon Policies

Photo from wikipedia

To identify the impact of low-carbon policies on the location-routing problem (LRP) with cargo splitting (LRPCS), this paper first constructs the bi-level programming model of LRPCS. On this basis, the… Click to show full abstract

To identify the impact of low-carbon policies on the location-routing problem (LRP) with cargo splitting (LRPCS), this paper first constructs the bi-level programming model of LRPCS. On this basis, the bi-level programming models of LRPCS under four low-carbon policies are constructed, respectively. The upper-level model takes the engineering construction department as the decision-maker to decide on the distribution center’s location. The lower-level model takes the logistics and distribution department as the decision-maker to make decisions on the vehicle distribution route’s scheme. Secondly, the hybrid algorithm of Ant Colony Optimization and Tabu Search (ACO-TS) is designed, and an example is introduced to verify the model’s and algorithm’s effectiveness. Finally, multiple sets of experiments are designed to explore the impact of various low-carbon policies on the decision-making of the LRPCS. The experimental results show that the influence of the carbon tax policy is the greatest, the carbon trading and carbon offset policy have a certain impact on the decision-making of the LRPCS, and the influence of the emission cap policy is the least. Based on this, we provide the relevant low-carbon policies advice and management implications.

Keywords: level programming; routing problem; carbon; low carbon; location routing; carbon policies

Journal Title: Mathematics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.