LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reducing Effect of Farnesylquinone on Lipid Mass in C. elegans by Modulating Lipid Metabolism

Photo by heebdog from unsplash

Bioassay-guided fractionation of marine-derived fungi revealed that the EtOAc fraction from the fermentation broth of a mutated fungal strain Streptomyces nitrosporeus YBH10-5 had lipid-lowering effects in HepG2 cells. Chromatographic separation… Click to show full abstract

Bioassay-guided fractionation of marine-derived fungi revealed that the EtOAc fraction from the fermentation broth of a mutated fungal strain Streptomyces nitrosporeus YBH10-5 had lipid-lowering effects in HepG2 cells. Chromatographic separation of the EtOAc fraction resulted in the isolation of 11 PKS-based derivatives, including a structurally unique meroterpenoid namely nitrosporeunol H (1). The structure of compound 1 was determined by the analysis of spectroscopic data. Further bioassay resulted in farnesylquinone (2) and its analogues to exert in vivo fat-reducing effects in C. elegans worm model. The underlying mode of action of compound 2 in the context of live worms was investigated, uncovering that compound 2 enhanced the mitochondrial β-oxidation rate and changed the transcriptional level of energy metabolism genes. Additional experiments revealed that compound 2 exerted its effects in C. elegans partially through repressing FAT-5, an isoform of stearoyl-CoA desaturase (SCD) which catalyzes the conversion of saturated fatty acids to monounsaturated fatty acids, thereafter leading to the modification of the fatty acid profile. Thus, compound 2 was suggested to be a promising lead for further optimization to treat obesity.

Keywords: reducing effect; effect farnesylquinone; metabolism; compound; farnesylquinone lipid; farnesylquinone

Journal Title: Marine Drugs
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.