Sulfated galactans (SG) isolated from red alga Gracilaria fisheri have been reported to inhibit the growth of cholangiocarcinoma (CCA) cells, which was similar to the epidermal growth factor receptor (EGFR)-targeted… Click to show full abstract
Sulfated galactans (SG) isolated from red alga Gracilaria fisheri have been reported to inhibit the growth of cholangiocarcinoma (CCA) cells, which was similar to the epidermal growth factor receptor (EGFR)-targeted drug, cetuximab. Herein, we studied the anti-cancer potency of SG compared to cetuximab. Biological studies demonstrated SG and cetuximab had similar inhibition mechanisms in CCA cells by down-regulating EGFR/ERK pathway, and the combined treatment induced a greater inhibition effect. The molecular docking study revealed that SG binds to the dimerization domain of EGFR, and this was confirmed by dimerization assay, which showed that SG inhibited ligand-induced EGFR dimer formation. Synchrotron FTIR microspectroscopy was employed to examine alterations in cellular macromolecules after drug treatment. The SR-FTIR-MS elicited similar spectral signatures of SG and cetuximab, pointing towards the bands of RNA/DNA, lipids, and amide I vibrations, which were inconsistent with the changes of signaling proteins in CCA cells after drug treatment. Thus, this study demonstrates the underlined anti-cancer mechanism of SG by interfering with EGFR dimerization. In addition, we reveal that FTIR signature spectra offer a useful tool for screening anti-cancer drugs’ effect.
               
Click one of the above tabs to view related content.