LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

New Dibenzo-α-pyrone Derivatives with α-Glucosidase Inhibitory Activities from the Marine-Derived Fungus Alternaria alternata

Photo by geraninmo from unsplash

Three new dibenzo-α-pyrone derivatives, alternolides A–C (1–3), and seven known congeners (4–10) were isolated from the marine-derived fungus of Alternaria alternata LW37 assisted by the one strain-many compounds (OSMAC) strategy.… Click to show full abstract

Three new dibenzo-α-pyrone derivatives, alternolides A–C (1–3), and seven known congeners (4–10) were isolated from the marine-derived fungus of Alternaria alternata LW37 assisted by the one strain-many compounds (OSMAC) strategy. The structures of 1–3 were established by extensive spectroscopic analyses, and their absolute configurations were determined by modified Snatzke′s method and electronic circular dichroism (ECD) calculations. Compounds 6 and 7 showed good 1,1-diphenyl-2-picrylhydrazyl (DPPH) antioxidant scavenging activities with IC50 values of 83.94 ± 4.14 and 23.60 ± 1.23 µM, respectively. Additionally, 2, 3 and 7 exhibited inhibitory effects against α-glucosidase with IC50 values of 725.85 ± 4.75, 451.25 ± 6.95 and 6.27 ± 0.68 µM, respectively. The enzyme kinetics study indicated 2 and 3 were mixed-type inhibitors of α-glucosidase with Ki values of 347.0 and 108.5 µM, respectively. Furthermore, the interactions of 2, 3 and 7 with α-glucosidase were investigated by molecular docking.

Keywords: dibenzo pyrone; pyrone derivatives; derived fungus; fungus alternaria; marine derived; new dibenzo

Journal Title: Marine Drugs
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.