LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Red Marine Algae Lithothamnion calcareum Supports Dental Enamel Mineralization

Photo by noaa from unsplash

The current management of oral conditions such as dental caries and erosion mostly relies on fluoride-based formulations. Herein, we proposed the use of the remaining skeleton of Lithothamnion calcareum (LC)… Click to show full abstract

The current management of oral conditions such as dental caries and erosion mostly relies on fluoride-based formulations. Herein, we proposed the use of the remaining skeleton of Lithothamnion calcareum (LC) as an alternative to fluorides. LC is a red macroalgae of the Corallinales order, occurring in the northeast coast of Brazil, whose unique feature is the abundant presence of calcium carbonates in its cell walls. Two experimental approaches tested the general hypothesis that LC could mediate enamel de-remineralization dynamics as efficiently as fluorides. Firstly, the effect of LC on enamel de-mineralization was determined in vitro by microhardness and gravimetric measurements to test the hypothesis that LC could either prevent calcium/phosphate release from intact enamel or facilitate calcium/phosphate reprecipitation on an artificially demineralized enamel surface. Subsequently, an in situ/ex vivo co-twin control study measured the effect of LC on the remineralization of chemical-demineralized enamel using microhardness and quantitative light-induced fluorescence. With this second experiment, we wanted to test whether outcomes obtained in experiment 1 would be confirmed by an in situ/ex vivo co-twin control model. Both experiments showed that LC exhibited equivalent or superior ability to modulate enamel de-remineralization when compared to fluoride solution. LC should be explored as an alternative to manage oral conditions involving the enamel demineralization.

Keywords: marine; lithothamnion calcareum; enamel mineralization

Journal Title: Marine Drugs
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.